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Properties of the finite continuous Jacobi transform are given. Two inverse
integral transforms are found whose kernels involve Jacobi functions. The range of
the original transform is characterized to some extent anti the inverse is shown to
be both a left and a right inverse. © 1990 Academic Press, Inc.

1. INTRODUCTION

The Jacobi differential operator

(1- x 2
) d 2/dx 2 + (fJ ~ a - (a + fJ + 2) x) d/dx

has regular singularities at -1, 1, and 00. Its spectral theory on the finite
interval (-1,1) reduces to expanding a function as a (discrete) series of
Jacobi polynomials. On the other hand, the spectrum on the infinite inter­
val (1,00) is continuous and leads to (continuous) expansions of Jacobi
functions; cf. Koornwinder [7]. In the case of the finite interval, the
integral defining the Fourier-Jacobi coefficient remains meaningful if one
replaces the degree n in this integral by arbitrarily complex numbers. Thus
one obtains a transform which maps quite general functions on (-1, 1)
into a class of entire functions of exponential type at most n. This trans­
form is called the finite continuous Jacobi transform, which we will invert
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by means of an integral over the real axis instead of a series. We will also,
to some extent, characterize the image of the transform.

The methods and results are quite different from the inversion problem
for the Jacobi transform for the interval (1, <Xl), although in Section 3 some
estimating techniques from the infinite case are used. The finite continuous
Jacobi transform was already inverted for the special Gegenbauer cases
tI. = 13 = integer ~ 0 by MacRobert in the 19th century; cf. Robin [8]. The
interest in this transform was revived by the work of Butzer, Stens, and
Wehrens [2], who dealt with the Legendre casetl. = 13 = 0 by methods dif­
ferent from those of MacRobert and who pointed out the relationship with
sampling theory. Their results were extended to Jacobi transforms for
values of the parameters GX and 13 satisfying tI. + 13 = 0 by Deeba and Koh
[3]. Subsequently Walter and Zayed [11] found similar results for values
such that tI. + 13 is a non-negative integer.

In this work we remove the restriction on tI. and 13, requiring only that
tI. > -1 and 13 > -1. We shall not use the standard Jacobi normalization
since in that case, the transformed function would not always be entire.
Rather we shall use the same normalization as the Legendre functions, viz.,
that the value of the Jacobi function at x = 1 be 1. We shall derive a
number of properties of the resulting Jacobi transform, and find two
different expressions for an inverse transform. We then find sufficient
conditions for a function to belong to the range of this transform.

Our principal concern will be to construct the inverse transform. A
number of approaches are possible. The simplest perhaps involves contour
integrals, in which a Jacobi series is written first as a sum of residues. This
leads to an inverse integral transform in which the integration is over a
contour in the complex plane. This is similar to the procedure followed in
[6] for Laguerre transforms. However, we are interested in obtaining an
inverse transform of the same form as in the references involving an
integral over the real axis. Another approach used in [11] uses a series to
obtain the kernel of the inverse transform. Our approach will differ from
both of these; we will use the Poisson summation formula as our principal
tool.

In Section 2 we present preliminary formulae and notation which
because of our renormalization of the Jacobi function is not always
standard. In addition we present a few facts from Fourier analysis which
we shall require in the subsequent sections. In Section 3 we collect a
number of estimates on the kernel and the transformed function of the
Jacobi transform. We also introduce an appropriate space on which the
transform operates, and derive some properties of the orthogonal system
obtained by transforming the Jacobi polynomials.

In Section 4 we present our main results, namely the inversion formula
for the continuous finite Jacobi transform. We obtain two integral trans-
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forms which recover the original function when applied to the transformed
function. One involves the eigenfunction of (1.1) which is regular at 1 while
the other involves the eigenfunction regular at - 1 as part of the inverse
kernel. The last section gives sufficient conditions for a function to be a
Jacobi transform. This enables one to obtain·a sampling theorem for such
functions.

2. PRELIMINARIES AND NOTATION

For any complex numbers a, b, and c with c # 0, - 1, - 2, ... the hyper­
geometric function is given by

.. . ~ (ah(bh k
F(a, b, c, z) .= L.. () k' Z,

k~O C k .
Izl < 1. (2.1)

The Jacobi function R~~,f3) for a finite interval is defined by

R;~,f3)(cos 8) := F( - t, t + rJ. + f3 + 1; rJ. + 1; sin2 !8), O~8<n, (2.2)

where rJ., f3 > - 1 and t E iC. A more usual normalization and notation (d.
[11]) is

p(a,f3) '= r(t + rJ. + 1) R(a,f3l
I • r( rJ. + 1) r( t + 1) I .

(2.3 )

Our choice avoids singularities in t and will yield the lowest possible
exponential type (namely n) in t. We denote

and observe the symmetry

Jc :=!(rJ.+,8+ 1) (2.4 )

(2.5)

The function t H 1R~':.~(cos 8) is an even entire analytic function. The
hypergeometric differential equation (cr. [4, 2.1 (l)] ) translates into

where

D~,f3R(a, f3)(cos 8) = (Jc2 - t2) R(~·f3)(cos 8)e I-A I-A' (2.6)

and

(2.8 )
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For n = 0, 1, 2, ... the functions p~a,p) given by (2.3) become the Jacobi
polynomials. We will work with the renormalized Jacobi polynomials
R~a,Pl. They satisfy the orthogonality relations

where

=6 (w(a,P))-l
m.n n , m,fl = 0, 1,2, ..., (2.9)

{

T(22+1)

w(a,P) _ T(a + 1) r(f3 + 1)'
n - (2n+22)T(n+a+l)T(n+22)

r 2(a + 1) T(n + 1) r(n + f3 + 1)'

n=O,

n= 1, 2, ... ;

(2.10)

cr. [4, 1O.8(4)]. The functions B1-* R~a,p)(cos B), n = 0, 1, 2, ..., form a com­
plete orthogonal system in L 2( (0, n), W iX,P( B) dB).

Let f be a function on (0, n) such that

1(t) := J: f(e) R~':'~(cos B) wa,p(B) dB (2.11 )

is well-defined for all t E Co Then 1 is called the finite continuous Jacobi
transform off In particular, we put

S~Al(t-2) :=W~iX,P)(R~iX,P)oCOS)A (t)

and obtain from [11, (2.9)] that

S~A)(t - 2) = w~a,p) It R~iX,P)(cos B) R~':'~(cos B) wiX,p(e) de

(2n+22)T(n+22) sinn(t-2-n)r(t-2+1)
T(n+ 1) . n(t2-(l+n)2)r(t+2) .

(2.12)

Clearly, S;:l(t-2) depends on a and f3 only through their sum, and by
(2.9) we have

m, n = 0, 1, 2, .... (2.13)

We will make ample use of the formula

n
T(z)r(l-z)=-.-(-)'

sm nz
(2.14 )
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cf. [4, 1.2(6)], and the function

ljJ(z) := T'(z)jr(z),

which satisfies the identity

ljJ(z)-IjJ(I-z)= -ncotg(nz);

87

(2.15 )

(2.16)

cf. [4, 1.7(11)]].
We will need a few but crucial facts from classical Fourier analysis.

Define the Fourier transform Jii' by

(Jii'1')(x):= f'l 1'(t) e-2nilx dt,
- 00

(2.17)

PROPOSITION 2.1. Let ¢J be an entire analytic function such that, for some
p> 1 and)l, C>O,

Then

(Jii'¢J)(x) =0 if Ixl ;:::)1.

PROPOSITION 2.2. Let ¢J be a continuous function on IR such that, for
some p > 1, there is a constant Cp such that

1¢J(t)l:::;; Cp(l + Itl)-P, tE IR,

I(Jii'1')(x) I :::;; Cp (1 + Ixl)-P, XE R

Then

00 00

I 1'(A + n) = L (Jii'1' )(n) e2nin
;., (2.18 )

n= -00 n= -00

Formula (2.18) is the Poisson summation formula; cf. [9, Chap. 7, (2.7)].

3. ESTIMATES

In this section we collect all estimates which will be needed in the sequel.
In particular, we will derive estimates for R~~fJ}(cos £J) andJ(t).

Let us start with the case of Jacobi series. From the equiconvergence
theorem (cf. [10, Theorem 9.1.2]) and from well-known properties of
Fourier-cosine series we obtain:
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LEMMA 3.1. Let fE L 2«0, n), w",p(B) dB) and let 1 be once continuously
differentiable on (0, n), Then

co

I(B) = L l(A +n) w~"'P) R~"'P)(cos B),
n=O

uniformly on compact subsets of (0, n).

Next we consider the integral representation

O<B<n,

2"-1/2 F (ex+1)( 1 )-2,,( 1 )-P-1/2
R("'P)(cos B) = sin - B cos - 8

t - A n 1/2F( ex + !) 2 2

x (cOS(tljl)(cos~ljI-cOS~B)"-1/2

(
1 1 1 cos iB-cos iljl)

x F "2 + f3, "2 - f3; ex + "2; ~ cos!8 2 dljl,

0<8<n, tEe, ex> -!, f3> -1; (3.1)

cr. [7, (5.8)J (where the factor (cos!ljI-coS!8),,-1/2 is missing) or [7,
(2.16), (2.19)J (by analytic continuation with respect to t) or [5, (6), (8)]
(by quadratic transformation of the hypergeometric function). The hyper­
geometric function in the integrand of (3.1) can be rewritten as

[

COS !B + cos !IjIJ -1/2 - /3

2 cos!8

(
1 1 _ cos !B - cos !1jI)

x F "2 + f3, ex + f3; a + "2; cos !8 + cos!1jI ,

cf. [4, 2.1(22)], which is non-negative for ex> -!, f3~ -!, ex~ -f3.
Similarly it may be expressed as

[
COS W+ cos !IjIJ" - 1/2 [COS ~IjIJ/3-"

2 cos W cos W

[
1 1 1 cos 2 M]

xF "2 (a- f3 )'2(ex- f3 + 1); ex +"2; 1- cos2iljl ,

cf. [4, 2.11(24 )], which again is non-negative for ex ~ f3 > -1, ex> -!. Thus
the function in (3.1) satisfies

F(! f3 !_f3. !. cos !8-cos !1jI)
2+ '2 ,0(+2' 2cosiB

2

~ 0, 0< IjI < 8 < 1r,
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if a> -~, a;?: -IPI, {3 > -1. For these values of a, {3 the integral in (3.1)
is dominated by a simimar integral with cos (tt{;) being replaced by
sUPo<ifJ<8lcos(tt{;)j. Hence

IR~':~(cos 8)1 ~ eellm II R~'f)(cos 8)

= eellm II F(A, A; a + 1; sin2 ~8). (3.2)

The function Z H F(A, A; a + 1; z) is regular at 0 and is a solution of a
hypergeometric differential equation for which the regular singularity at
has exponents °and -{3. Thus jF(A, ),; a + 1; z)j is dominated on [0,1) by
a constant multiple of (l-z)-fJ if {3>0, of 1+ Ilog (1-z)1 if {3=O, and of
1 if {3 < 0.

If a, {3 > -1 and the inequalities a> -~, a;?: -1m are not both satisfied
then they will be satisfied when a is replaced by a + 1. We can express
Jacobi functions of order (a, {3) in terms of Jacobi functions of order
(a+ 1, {3) by

[(), + t)(A + t - {3) R(a+ 1,1') - (A - t)(), _. t - B) R(cx+ I,P)JR(a,fJ) = I-A • -I-I.. (3.3)
I-I. (2t(a+l))

This in turn may be substituted in (3.1) to obtain

R~".:.~)(cos8)

_2cx+I/2T(a+2) ( . ~ )-2a-2( ~ )-1'--1/2
- JII/2F(a+3/2) sm 2 8 cos 2 8

x Ie (2 + t)(), + t - {3) cos( (t + ~) t{;) - (A - t)(2 - t - {3) cos((~ - t)t{;)

o 2(a + 1) t

( 1 1 )a+I/2 (1 1 3 cos 18-cos ~if;)
x cos - ,I, - cos - 8 F - + {3 - - {3' a +-' 2 ~dll,.

2 'I' 2 2' 2 ' 2 ' 2 cos W 'Y

Since the hypergeometric function in the integrand is non-negative, and
(3.2) we have

jR(a+ I,fJ)(cos 8)1 ~ eellm II R(a + I,fJl,(cos 8)
I - A "" - 1/2 - I. ,

we may conclude:

LEMMA 3.2. Let a, {3> -1; put I; :=0 if a> -!, IX;?: -j{31 and 1;:= 1,
otherwise. Then there is a positive constant Ca,fJ such that, for 0 ~ e< n,
t E iC,

if f3 > 0,

if f3 = 0,

if f3 < o.
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We now turn to estimates forJ(t) (cf. (2.11)). Iffis continuous on [0, n]
then, by Lemma 3.2, J is an even entire analytic function which for some
constant C~,fJ satisfies the estimate

IJ(t)I~C~,fJ(I+ltl)"e"IImtl, tEiC.

However, we will need functions f such that Jdecreases on the real axis as
rapidly as some inverse power. For this purpose we restrict our functions
somewhat more.

DEFINITION 3.3. Let p = 0, 1,2, .... The class C 2
p consists of all even,

2p times continuously differentiable functions on [- n, n] for which
f(k)(n) = 0, k = 0, 1, ..., 2p-1.

LetfEC2P,p~1.Then, by (2.11) and (2.6),

(Je 2
- t2) J( t) = f: f( e)(D~,fJR~,",-P](cos e)) w~,fJ(e) de

= J: (D~,fJ f(e)) R~,",-~.)(cose) w~,fJ(e) de

d
+ f(e) w~,fJ(e) de R~,",-~!(cos e)]~

d
-R~,",-P](cos e) w~,fJ(e) def(e)]~.

The two integrated terms disappear. This follows from

d (~,fJ) e Je2_ t2. 1 e 1 e (~+l,fJ+l) ( e)
deRt-;'(cos )=~S1ll2 cos 2 Rt-(1/2)(~+fJ+3) cos

(cf. (2.2) and [4,2.8(20)]), from Lemma 3.2, from the oddness off', from
f(n) = 0, and from 1'(e) = O(cos!8) as ei n. Next we observe that
D~,fJfEC2p-2 iffEC 2p, and conclude that

Hence:

LEMMA 3.4. Let IX, f3 > -1 and e= 0 or 1 as in Lemma 3.2, p = 0, 1, ....
Let fE C 2P. Then there is a positive constant C~,fJ,P,f such that

IJ(t)I::;;C (1 + Itl)-2p+"e"IImt l tEiC.
~~~f '
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The following two lemmas will be useful.
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LEMMA 3.5. Let a, bE tC. Then there is a positive constant Ca•b such that

Proof By (2.14) we have

1

r(a + t) r(b - t)

1(1- b + t) sin(n(b - t»

F(a + t) n

F(1-a- t) sin(n(a+ t)

F(b- t) n

Now use the asymptotic formula [4, 1.18(4)] for the first factor. I

LEMMA 3.6. n- 1sin(nt)ljJ( -t) is an entire analytic function of t which
equals (-1 Yfor t = 0, 1,2, ... and 0 for t = -1, - 2, ... ; there is a positive
constant C such that

In-1sin(nt)ljJ(-t)I~Clog(1+ltl)e1!IImtl, tEtC.

Proof Use (2.16) and the asymptotic formula for ljJ(z) [4, 1.18(7)]. I
Finally, we estimate S~A)(t-),). By (2.12) and (2.14),

S()c)(t _ A) = (_1)" (2n + 2A) r(n + 2),)
Il 1(n + l)(A + n - t)(A + n + t) F(A - t) F(A + t)

Hence, by Lemma 3.5:

LEMMA 3.7. S~·)(t - A) is an even entire analytic function of t which
satisfies the estimate

for some positive constant CIl,),.

LEMMA 3.8. Let fE C 2
p, where 2p> 1 + B + max{2ex + 1, 2)" ex + 1/2} and

B =0 or 1 as in Lemma 3.2. Then

cc

](t)= L: ]U+n)S~A)(t-A)
n=O

with absolute convergence, uniform on strips offinite width in iC around IR.
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Proof By Lemma 3.1 we have

00

f(8) = L J(A + n) W~a,(3)R~a,(3)(cos 8),
n=O

There exist constants such that

[w~a,(3)[ :>;;const(l +n)2a+I

0< 8 < n.

(by (2.10)),

IR~a,(3)(cos 8)1:>;; const(l + n)max(o,{3-a, -I/2-a)

(3.4)

(by [10, Theorem 7.32.1]). (3.5)

Then, by these inequalities and the ones in Lemmas 3.2 and 3.4, we obtain

w~a, (3)IJ(A + n)1 r[R~a,{3l(cos 8)1 IR;~~( cos 8)[ wa,{3(8) d8
o

:>;; const( (1 + [t[)e e"IIm tl (1 + n) -2p+ e+ max(2a+ 1, 2'\, a+ I/2}

Now use (2.11) and (2.12). I

4. ANALYTIC CONTINUATION OF THE INVERSION FORMULA

Let fEe 2p (p ~ 1); by Lemma 3.1 we have

co

f(8)= L J(A+n)R~a,{3)(cos8)w~a,{3),

n~O

and, since

0< 8 < n, (4.1 )

R(a,{3)(cos 8) = (_l)n ([3 + 1)n R({3,a)( - cos 8)
n (a+l)n n ,

cf. [4, 10.8(13)], (4.1) can also be written as

co

f(8)= L J(A+n)R}fcal(-cos 8)

n=O, 1, ..., (4.2)

where

x F(a + 1) T([3 + 1)'

w('\) _ {F(2A + 1),
n - 2(-lt(n+A)T(n+2A)/n!,

0< 8 < n,

n=O,

n= 1, 2, ....

(4.3 )

(4.4)
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In their dependence on t, J(t), R~'=.~(cos8), and R~~~)( ~cos 8) are even
entire analytic functions with estimates given by Lemmas 3.2 and 3.4. It is
our purpose to find h~~·f3) and iW), even entire analytic in t, such that (4.1)
and (4.3), respectively, can be written as integrals

f(8) = f') J(t) R~'=.~(cos8) h~rx.f3) dt,
~CC

f
cc h(A) dt

f(8)= ~ooJ(t)R~~~)(~cos8)F(ct+1')r(!3+1)'

0< () < n,

o< () < n, (4.6 )

provided p is sufficiently large.
The idea of the derivation is as follows. Let us start, for instance, with

(4.3), for which we write the right-hand side as

00

L F()o+n)w~A),
n~O

where F is an even entire analytic function satisfying th@ estimate

(4.7)

!F(t)1 ~const(1 + Itl)~m e2nllmtl, tEe, (4,8 )

for a certain m. For 2A ¢ 71. we immediately find a natural analytic extension
of w~') in the form of an entire analytic function

-(A) ._ 2m
(J I .- sin(2n)o) F(1 - A+ t) F(1-), - t)'

of t, satisfying the estimate

1a~)')1 ~ const( 1 + Itl )2A enl1m
II,

by Lemma 3.5 and such that

2), ¢ 71.,

tEe,

(4.9)

(4.10)

Then (4.7) equals

{
-().)

-V) _ W n ,

(JA+n- °,
n = 0, 1,2, ...,

n= -1, -2, ....
1)

CC

L F(A + n) aYln·
n= -00

(4.12 )

Now let m > 2A + 1. Then we can apply Proposition 2.2 in order to rewrite
(4.12) as

f: e2ninA fCC F(t) a~ne~2ninl dt,
n= -00 -00

(4.13 )
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which in turn, by applying Proposition 2.1 together with (4.8) and (4.10),
can be written as

fco F(t) a~)')(1 +2 cos(2n(t-A))) dt.
- co

(4.14)

Finally, we take the even part of a~A)(1 +2 cos(2n(t - A))) and denote it by
h(A)., .

h(A) _ 4nt sin(2nt)
I - T(1- A+ t) r( 1- A- t)'

where 2A if: 71. Thus we have proved that

I F(A+n)w~A)=fco F(t)h~A)dt.
n=O -co

(4.15 )

(4.16)

In particular, (4.6) will be valid with this choice of h~A).

While the derivation was done for 2..1, ¢ 7L, the singularities in (4.9) for
2..1,=0,1,2, ... drop out in (4.15). By continuity one can expect that (4.16)
also holds for 2..1, = 0, 1,2, ... with the h~A) given by (4.15). However, for
such A there is a simpler expression which may be derived from (4.15):

-(A) _ t(2 cos(n(t - A)) - 2 cos(3n! + nA))(t - AhA
hi - 1 '

t-II.

2..1, = 0,1,2, .... (4.17)

For this choice ofh~A), the terms with e±31til in the right-hand side of (4.16)
drop out because of Proposition 2.1. Hence, (4.16) is valid with

-(A) _ 2t cos(n(t- A))(t- AhA
h, - 1 '

t-II.
2..1,=0,1,2, .... (4.18 )

There is an analogous road from (4.1) to (4.5) by the identities

co co

L F(A+n)OJ~a,/l)= L F(A+n)(j"\a1~
n=O n=-oo

= fco F(t) (j"~a,/l)(1 + 2 cos(2n(t - A))) dt
-co

= () F(t) h~a,/l) dt,
-co

(4.19 )
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where F is an even entire analytic function satisfying the estimate (4.8) with
m > 20: + 2 and t~ (j~~.fJ) is an entire analytic function satisfying the
estimate

tEe, (4.20)

for all 6> 0. For 0: =F 0, 1,2, ... we find by reasoning as before that

F( -0:) a(X)
(j(a,(3) = I

, T( 1 + 0:) F( (13 - 0: + 1)/2 + t) r( (13 - 0: + 1)/2 - t)'

-U)
h(a,(3) = r( -0:) h,

I F(1 + 0:) r( (13 - 0: + 1)/2 + t) F( (13 - 0: + 1)/2 - t)'

OW) given by (4.15) or (4.18)). Hence we have

I F(}, + n) w~t>,fJ) = f') F(t) h~t>,(3) dt
n=O -00

(4.21 )

(4.22)

(4.23 )

with h~t>,(3) given by (4.22).
This can be further simplified in a number of special cases. If

0:, 13 = - ~, ~, ... and 0:;;:: 13 then (4.22) can be written as

(
0:-13-1)

t(t - ).)2,l t - 2 (sin(2nt - nf3) + sin(n(o: + 1
h(~,(3) = a~(3

I r 2 (0: + 1) sin(n(o: + 1»)(t - tl)

Hence, by Proposition 2.1 we also have (4.23) with

t( t - tlb (t __0: _-.:-13_-_1)
h(IX,fJ) = 2 ~~fJ

I r2(0:+1)(t-).)
(4.24)

If 0: = 0, 1,2, ..., however, the previous formulae are not valid and we take
another extension of w~",(3):

(J'(a,[3) = (-1)'" t(t- tl + 1)", (-t- tl + 1)", sin(2n(t- 2» l/J(tl- t)
I nr2(0:+1) ,

0: = 0, 1, 2, .... (4.25)

640/60;1-7
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o-}",P)(l + 2 cos(2n(t-..l))) = (-1)" t(t-..l +:}~~~~~)..l + 1)" 1jJ(..l - t)

x (sin(2n( t -..l)) + sin(4n( t -..l))).

Hence, by Proposition 2.1 and Lemma 3.6, (4.23) is valid with

h}"'P) = (-1)"+ 1 t(t -..l + 1),,( - t -..l + 1)"

x (1jJ(..l - t) sin(2n(..l - t)) + 1jJ(..l + t) sin(2n(..l + t))) (4.26)
2nr2(a + 1)

Formulas (4.23) and (4.16) cannot only be applied to (4.5) and (4.6) but
can also be used to give orthogonality relations for the functions S~A) as
integrals. From (2.13) we obtain

00

" S(A)(k) S(A)(k) w(,,·P) = w(",P) b
L.. m n k n m,n'
k~O

00

" S(A)(k) S(A)(k) 6j(A) = 6j(A) bL.. m n k n m,n"
k~O

(4.27)

(4.28)

Then, by Lemma 3.7, the function F(t) := S~(t -..l) S~A)(t -..l) has the right
behaviour in order that (4.23) and (4.16) hold.

Let us summarize our results in the following theorem.

THEOREM 4.1. (a) Let h}A) be given by (4.15) (general ..l) or (4.18).
Then (4.16) is valid for entire even analytic F satisfying (4.8) with
m > 2..l + 1. In particular,

-(A)-fOO At (P,") _ h t dt
f(O)- _oof( )Rt - A ( cosO) r(a+l)r(p+l)'

if fE e 2p with p>..l + I> +! and I> as in Lemma 3.2, and

o< 0 < n, (4.29)

foo S~)(t-..l)S~A)(t-..l)7W)dt=6j~A)bm,n' (4.30)
-00

(b) Let h }'" P) be given by (4.22), (4.24), or (4.26). Then (4.23) is valid
for entire even analytic F satisfying (4.8) with m > 2a + 2. In particular,

f(O) = foo J(t) R}~~)(cos0) h}"'P) dt,
-00

O<O<n, (4.31 )
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iffE C 2p with P> IX + e+ 1 and e as in Lemma 3.2, and
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foo SP')(t - A) S()')(t - A) h(a,{3) dt = u;la.(3) b (4.32)
m n t n m,n°

- 00

Formula (4.29) with h~A) given by (4.18) (2/1 = 1, 2, ... ) was obtained
earlier in [11, (5.9), (5.11)]. Special cases of their result go back to [3,
(3.4)] (2A = 1) and MacRobert (cf. [8, Chap. IX, (151), (152)J)
(0( = f3 = 0, 1,2, ... ); see also [2, Theorem 1] (IX = f3 = 0). The conditions On
f vary and the methods differ from ours.

The cases IX = f3 = ± ~ of (4.31) with (4.24) also follow from the inversion
formulas for the Fourier-cosine and Fourier-sine transform in view of the
two formulae

R~ -1/2. -1/2)(cos 8) = cos(t8),

RO/2• 1/ 2 )( 8) _ sin(t8)
1-1 cos - . e't sm

5. THE INVERSE FINITE CONTINUOUS JACOBI TRANSFORM

LEMMA 5.1. Let g be an even entire analytic function satisfying

(4.24 )

(4.25 )

with m > 2IX + 2 + e, where e = °or 1 as in Lemma 3.2 for some constant C.
Then

foo g(t) R~~~(cos 8) h)a,{3) dt
-00

00

= L g(A+n) R~a·(3)(cos8) (j)~a,{3),

n~O

o~e<n.

Proof Let F(t) := g(t) R)~~!(cos 8). Then, in view of Lemma 3.2, F(t)
satisfies the estimate (4.8) with m replaced by m - e and m - e > 20( + 2.
Hence (4.23) is valid. I

LEMMA 5.2 (Cf. Boas [1, Theorem 9.6.11]). Let AEIR. Suppose g is an
even entire analytic function satisfying

g( t) = o( Itl- 2 ), + 1 e"IIm 'I),

uniformly as Itl -+ 00, and suppose g()o + n) = 0 for n = 0, 1, 2, .... If
2A = 0, -1, - 2, ..., suppose moreover that the zeros at A, A+ 1, ..., - A are
double. Then g is identically zero.
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The estimate for g in Lemma 5.2 cannot be further relaxed, as is shown
by the example

1
g(t) := F(A + t) r(A - t)"

This satisfies all conditions on g in the lemma except that
g( t) = O( Itl- 2;[+ 1 e"IIm t l ) rather than (5.1). However, g is not identically
zero.

Fix IX, 13> -1 and let h~a,{Jl be given by (4.22), (4.24), or (4.26). Let g be
an even function on IR such that

g(8) := foo g(t) R~",-f3)(cos 8) h~a,{Jl dt
-00

(5.2)

is well-defined for - n < 8 < n. In view of (4.31) we call the transformation
g~ g the inverse finite continuous Jacobi transform.

THEOREM 5.3. Fix IX, 13 > -1 and let e = 0 or 1 as in Lemma 3.2. Let
fl>6A+2e+3+max{lX-f3,0} and p=max{l, [A+(e/2)+1/2]}. Let g
be an even entire analytic function satisfying, for some constant C,

and such that

t E iC, (5.3 )

foo g(t)ii~;[+k)dt=O,
-00

Then gE C 2
p and g= (g) A.

k=O, 1, ..., 2p-1. (5.4 )

Proof By Lemma 5.1 we have, since fl > 2(1X + 1) + e,

00

g(8) = L g(A + n) R~a.{Jl(cos 8) w~a, {Jl.

n=O

Now

00 (d)k" g(A+n) R(a.{Jl(cos(J)w(a,{J)n7:k d(cos (J) n n

(5.5)

IS absolutely convergent, uniform on IR, for k = 0, 1, ..., 2p. This follows
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from the fact that the absolute values of the terms are dominated by a
multiple of (1 + n) -I - v by the formula

d
w(cx,!3) R(cx,!3)(cos B)

n d(cos B) n

and by (5.3), (3.4), (3.5). Hence g is 2p times continuously differentiable on
!RI. Also

00

= 2 -k(1J( + Ih L gU, + n) W~c'_\k, !3+k) R~CX_\k, !3+k) (-1)
n~k

2-k 00

_ " () + ) ";'"U+k)
- F( IJ( + 1) F([3 + k + 1) n::-kg, n OJ n- k

2 - k
- fOO -U+k)_
- F( IJ( + 1) F([3 + k + 1) _ 00 g( t) h t dt - 0

for k=O, 1, ... , 2p-l,

where we used (2.10), (4.4), (5.4), and Theorem4.1(a) since p>2A+1.
Hence, gE C 2P

• Now, by Lemma 3.4, (g) A satisfies (5.1) and by the
uniqueness of the Jacobi series, g - (g) A satisfies the assumptions of
Lemma 5.2. I

Remark. In [7, Theorem 5.1] necessary and sufficient conditions were
given in order that g = J with f being an even COO-function with compact
support inside ( - n, n).

REFERENCES

1. R. P. BOAS, JR., "Entire Functions," Academic Press, New York, NY, 1954.
2. P. L. BUTZER, R. L. STENS, AND M. WEHRENS, The continuous Legendre transform, its

inverse transform, and applications, Int. J. Math. Math. Sci 3 (1980), 47-67.
3. E. Y. DEEBA AND E. L. KOH, The continuous Jacobi transform, Int. J. Math. Math. Sci.

6 (1983), 145-160.
4. A. ERDELYI et al., "Higher Transcendental Functions I, n," McGraw-Hi!!, New York,

1953.
5. G. GASPER, Formulas of the Dirichlet-Mehler type, in "Fractional Calculus and Its

Applications" (B. Ross, Ed.), pp.207-215, Lecture Notes in Mathematics, Vol. 457,
Springer-Verlag, New York/Berlin, 1975.



100 KOORNWINDER AND WALTER

6. H.-J. GLAESKE, Eine Verallgemeinerung der Laguerre-Transformation, Serdica 5 (1979),
179-185.

7. T. H. KOORNWINDER, A new proof of a Paley-Wiener type theorem for the Jacobi trans­
form, Ark. Mat. 13 (1975), 145-159.

8. L. ROBIN, "Fonctions spheriques de Legendre et fonctions spheroidales," Tome III,
Gauthier-Villars, Paris, 1959.

9. E. M. STEIN AND G. WEISS, "Introduction to Fourier Analysis and Euclidean Spaces,"
Princeton Univ. Press, Princeton, NJ, 1971.

10. G. SZEGO, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Pub!. Vo!. 23, 4th ed.,
Amer. Math. Soc., Providence, RI, 1975.

11. G. G. WALTER AND A. I. ZAYED, The continuous (0:, p)-Jacobi transform and its inverse
when 0: +P+1 is a positive integer, Trans. Amer. Math. Soc. 305 (1988), 653-664.


